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TECHNICAL MEMORANDUM 1283

RESISTANCE OF A DELTA WING IN A

By E. A. Karpovich and F.

SUPERSONIC FLOW

I. Frankl

A plane wing of the plan form of an isosceles triangle (angle
between the equal sides 2T) symmetrically placed relative to the
xz-plane is considered. The side opposite the angle 2y serves as

the trailing edge of the wing. The wing is inclined at the small
angle of attack P in a flow of velocity V greater than the veloc-
ity of sound. The coordinate axes are fixed to the wing, the x-axis
being directed along the flow, the z-axis vertically upward, and the
y-axis perpendicular to the x- and z-axes (fig. 1). The flow will
be conical (reference 1) and for the investigation of the motion it is
sufficient to consider the velocity field in a certain plane perpen-
dicular to the direction of the velocity of the basic flow, for example,
in the plane x=1 with complex variable

‘1“ After carrying out the
transformation

‘T- 21 tan a (1)
l–l+TT

where a is the Mach angle, the velocity components u, v, and w in
the region lTI <1 satisfy the equation of Laplace (reference 1) so
that u = Re f(T)tan a, where f(T) is a certain analytic function
determined by the boundary conditions on the wing and on a unit circle.

The condition of nonvorticity gives

1U(? ) = v+ iw= - -
r

Td-f+:fi
2 T

(2)

J
If the wing is located entirely within the Mach cone (y c a),

there may be expected at the forward edges, due to the infinite veloc-
ity, the occurrence of suction forces decreasing the resistance of the
wing . The formula for computing the total resistance is given by
M. I. Gurevich (reference 2) in the form

*“Soprotivlenie Strelovidnogo Wyla pri Sverkhztiovykh Skorostiakh.”
Prikladnaya Matematika i Mekhanika, Vol. XI, No. 4, 1947, pp. 495-496.
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Jf ()
*

x=: (~2U2 + V2 + w2)dcr - w = &a (3)

where the integration is carried out over the entire plane ‘1 with
a cut-out from ‘1 = - tan y to ‘1 = tan y.

It is therefore clear that the total resistance will always be
greater than zero.

Equation (3), however, is unsuitable for direct computation and
with such representation the suction force is evidently not separated
out . A different method of determining the resistance of a delta wing
that avoids this difficulty is therefore indicated.

The momentum theorem is applied to the volume of air within the
cones enclosing the leading edges. The suction force is then

X1=-2

Jr

(P-Po) cos (nx) ds - 2
J

P(U + V)Vn dS

s-l-o S+CJ .
(4)

where S is the lateral surface area of the cone, u its base in the
plane x=1, and n the outer normal to the surface.

The force xl is of the second-order magnitude relative to 13,
so that in the expressions under the integral sign second-order small-
ness terms must be taken into account. By use of the Bernoulli integral
and the properties of conical flow, there is obtained

f

where 51 and 31 are polar coordinates in the plane ‘1 with

center ‘1 = - tany.
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Equation (5) gives the principal term of the suction force. For
u, .v, and w are determined with an error of the second-order small-
ness; that is, the error in the expression for xl will be of the third-
order smallness. Equation (5) can easily be obtained directly from
equation (3). It is necessary to differentiate equation (3) with respect
to x and by using the equation

2 au &
-v -&+5+g=o

()

1“
P =—

tan a
(6)

to reduce the surface integral to a contour integral. The equation is
then integrated with respect to x after which the part corresponding
to the suction force, which coincides with equation (5), can easily be
separated out. For a symmetrical wing (references 2 and 3)

(7)

where E(k’) is the complete elliptic integral of the second kind with n~ ~i!)~ o+

“=- and ‘= ~tany~ and b is determined from the relation

tan T/tan a = 2b/(l+b2).

For computing the suction force, it is sufficient to have the
principal terms f(l) and u(T):
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The integrals entering equation (5) are readily computed:

Po 2T1-b2xl . - ~ J@& g,

E2(k’) 1 + b2

2X1
c

-P2fltany l-b2= k’ z
xl = = - — cot TC1,

POV2 tan y E2(k’) 1 + b2 411

The drag coefficient will be

Cx = Cyp - ~ cot ycyz

Ify=u, that is, b = 1, then

Cx = Cyp

},

and the suction force vanishes. If iL =;fl,b=o,

cx=cy b.& cot y CY2 = itp2 tan y

It is noted that Cxlp/4~2 and CxV/4p2 are fUnCtiOnS

ofk= p tan y. These relations are graphically shown

Translated by S. Reiss,
National Advisory Conunittee
for Aeronautics.
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